It Runs in the Family: Occupational Choice and the Allocation of Talent

Mattias Almgren	Konjunkturinstitutet
Jósef Sigurdsson	Stockholm University
John Kramer	University of Copenhagen

UC Berkeley November 14, 2023

Sorting

- Earnings is the outcome of individuals' productive skills
- Parents and children share the same skills

Sorting

- Earnings is the outcome of individuals' productive skills
- Parents and children share the same skills

Opportunities

- Earnings and labor market success shaped by environment
- Parental background and place of birth determine opportunities

Sorting

- Earnings is the outcome of individuals' productive skills
- Parents and children share the same skills
- Sort on skill advantage into same occupations (Roy, 51)

Opportunities

- Earnings and labor market success shaped by environment
- Parental background and place of birth determine opportunities
- Unequal access and barriers to entering occupations

Both consistent with **occupational following** but differ starkly in implication

Implications for Efficiency and Equity

Inequality **but** Efficiency

- Children inherit skills and knowledge from parents (Laband-Lentz, 85)
- Growth, inequality and immobility move together (Galor-Tsiddon, 97; Jovanovic, 14)

Inequality and Inefficiency

• Misallocation of talent increases inequality, reduces mobility and lowers growth (Bell-Chetty-Jaravel-Petkova-Van Reenen, 19; Hsieh-Hurst-Jones-Klenow, 19)

Does occupational following reflect misallocation of talent?

• Consequences for intergen. mobility — Implications for efficiency

Does occupational following reflect misallocation of talent?

• Consequences for intergen. mobility — Implications for efficiency

Setting: Swedish sons & fathers

• Data on individuals' cognitive and noncognitive skills back to 1960s

Does occupational following reflect misallocation of talent?

• Consequences for intergen. mobility — Implications for efficiency

Setting: Swedish sons & fathers

• Data on individuals' cognitive and noncognitive skills back to 1960s

Empirical evidence: A play in two acts

1. Structural Roy model

- Occupational choice depends on skills & background
- ◊ Counterfactual experiment: Equal opportunity

Does occupational following reflect misallocation of talent?

• Consequences for intergen. mobility — Implications for efficiency

Setting: Swedish sons & fathers

• Data on individuals' cognitive and noncognitive skills back to 1960s

Empirical evidence: A play in two acts

1. Structural Roy model

- Occupational choice depends on skills & background
- ◊ Counterfactual experiment: Equal opportunity

2. Reduced form

- ◊ Quasi-experimental evidence occupational decline
- ◊ Same regressions on model-generated data

Preview of Results

Prevalent occupational following

• Children 10-100× more likely to choose parent occ than other occs

Preview of Results

Prevalent occupational following

• Children 10-100× more likely to choose parent occ than other occs

Misallocation of talent

- Equalizing opportunities reduces following by more than 50%
- Increase in intergenerational mobility, concentrated at the bottom
- Output gains are small in general equilibrium
- Similar reduced-from evidence

Occupational Following

Occupational Mobility Bias: Fathers & Sons

Occupational Mobility Bias: Fathers & Sons

Roy Model of Occupational Choice

Model of Occupational Choice

Model developed in two steps

First: Basic model to illustrate mechanisms Second: Extend to structural GE model that fits Swedish data

Model of Occupational Choice

Model developed in two steps

First: Basic model to illustrate mechanisms

Second: Extend to structural GE model that fits Swedish data

Basic Roy (1951) model

(Ohnsorge-Trefler, 07; Mayer, 08; Adão, 15; Nakamura-Sigurdsson-Steinsson, 22)

• Workers have heterogeneous skills in Fishing & Hunting

Model of Occupational Choice

Model developed in two steps

First: Basic model to illustrate mechanisms

Second: Extend to structural GE model that fits Swedish data

Basic Roy (1951) model

(Ohnsorge-Trefler, 07; Mayer, 08; Adão, 15; Nakamura-Sigurdsson-Steinsson, 22)

- Workers have heterogeneous skills in Fishing & Hunting
- Heritability: Skills of children and parents (imperfectly) correlated
- Costly to enter occupations Education, training, etc
- Costs depend on family Information, barriers, bequests, etc

Occupational Sorting by Comparative Advantage

Occupational Sorting by Comparative Advantage

Occupational Sorting by Comparative Advantage

Comparative advantage in fishing, s

Misallocation: Sons of hunters that become hunters but have comparative advantage in fishing

Intergenerational Income Mobility

Intergenerational Income Mobility

 d_F : Sons of high-income fathers stay in F d_H : Sons of low-income fathers in H

Structural Roy Model

Structural Roy Model

General equilibrium Roy model to match the Swedish labor market

Extensions of the basic model

1. Measure occupation-specific productivity using individuals' skills

Skills of Individuals

Data on individuals' skills

- Military draft tests and evaluations
- Taken by all Swedish men at age 18 since 1969

Skills of Individuals

Data on individuals' skills

- Military draft tests and evaluations
- Taken by all Swedish men at age 18 since 1969

Cognitive skills

- Logic-inductive ability (fluid intel.), Spatial ability, Verbal comprehension (crystallized intel.), Technical understanding
- Standardized tests and scores

Skills of Individuals

Data on individuals' skills

- Military draft tests and evaluations
- Taken by all Swedish men at age 18 since 1969

Cognitive skills

- Logic-inductive ability (fluid intel.), Spatial ability, Verbal comprehension (crystallized intel.), Technical understanding
- Standardized tests and scores

Noncognitive skills/personality traits

- Psychological energy (focus, perseverance), Intensity (activation w/o external pressure), Emotional stability (stress tolerance), Social maturity (extroversion)
- Behavioral questions by trained psychologists standardized scores 11/30

Measuring Returns to Skills and Occupation Skill Fit

Conceptual model: the "task framework" (Autor-Levy-Murnane, 03; Gibbons-Waldman, 04)

- Individuals are heterogeneous in skills
- Occupations differ in tasks and, therefore, how productive skills are
- \Rightarrow Skills of incumbents can be used to measure skill requirements

(Lazear, 09; Gathman-Schönberg, 10; Autor-Handel, 13; Fredriksson et al. 18)

Measuring Returns to Skills and Occupation Skill Fit

Conceptual model: the "task framework" (Autor-Levy-Murnane, 03; Gibbons-Waldman, 04)

- Individuals are heterogeneous in skills
- Occupations differ in tasks and, therefore, how productive skills are
- \Rightarrow Skills of incumbents can be used to measure skill requirements

(Lazear, 09; Gathman-Schönberg, 10; Autor-Handel, 13; Fredriksson et al. 18)

Presumption: Occupations differ in returns to skills

- Returns to cognitive skills as technology complement (e.g. Katz-Murphy, 92)
- Returns to noncognitive skills for interpersonal interaction (e.g. Deming, 17)

Measuring Returns to Skills and Occupation Skill Fit

Conceptual model: the "task framework" (Autor-Levy-Murnane, 03; Gibbons-Waldman, 04)

- Individuals are heterogeneous in skills
- Occupations differ in tasks and, therefore, how productive skills are
- $\Rightarrow\,$ Skills of incumbents can be used to measure skill requirements

(Lazear, 09; Gathman-Schönberg, 10; Autor-Handel, 13; Fredriksson et al. 18)

Presumption: Occupations differ in returns to skills

- Returns to cognitive skills as technology complement (e.g. Katz-Murphy, 92)
- Returns to noncognitive skills for interpersonal interaction (e.g. Deming, 17)

Predict earnings ("Roy-productivity") and entry probability (skill fit)

- Random forest using skills of incumbents, excl. followers
- For each individual, predict earnings & skill fit to every occupation

Actual and Predicted Earnings

Factor Importance

General equilibrium Roy model to match the Swedish labor market

Extensions of the basic model

- 1. Measure occupation-specific productivity using individuals' skills
- 2. Discounts into father's occupation at 3 levels (broad to narrow)
- 3. Consumption: bundle of goods produced by occupations
- 4. Occupations produce using labor; prices/wages determined in GE
- 5. Preference shocks: $\varepsilon_k(i)$, i.i.d. across workers & occupations

Entry Cost Estimation

- Occ following: 91 + 10 + 2 discounts to hit transition matrix Success
- Distribution: 91 entry costs to hit the densities Success
- Parameters: 192 (2 normalized to 0) Entry costs Costs vs Educ

Expenditure shares
Follower Discounts

Entry-cost discount relative to children with fathers in other occs

Median follower discount ~ 80 kSEK (\$7,500) — 27% of earnings

Counterfactual Experiment

The 'Equal Opportunities' Experiment

The experiment: Equal opportunity for occupational entry

- Neutralize all follower discounts
- Common entry costs unchanged
- Solve for occupational allocation and prices/wages in GE

Drop in Occupational Following

Drop in Occupational Following

Drop in Occupational Following

Drop in occupational following from 8.6% to 3.4% Occupations

White-Collar Occupations

Occupational mobility: WC^{Son} | BC^{Father} ↑from 47% to 54%

20/30

Intergenerational Income Mobility

Decomposition: Paternal occ background accounts for 26% of intergenerational earnings persistence **Skills Real Income**

Intergenerational Income Mobility

Optimal allocation: Allocation that maximizes aggregate income

Occupational Skill Distance Moved

- Measure skill distance between occupations using O*NET O*NET
- Most misallocation among sons of bottom 20% and top 10% fathers

Aggregate Effects

	Occupational	$Pr(Q1 \rightarrow Q5)$	Δ P90/P10	Δ Aggregate	Δ Wage
	following			earnings	of blue collar
Baseline	8.4%	9.7%	—	—	_
Counterfactual PE	2.9%	12.6%	-3.9%	2.0%	—
Counterfactual GE					

• \uparrow intergen. occupation & income mobility, \uparrow income equality

Aggregate Effects

	Occupational	$Pr(Q1 \rightarrow Q5)$	Δ P90/P10	Δ Aggregate	Δ Wage
	following			earnings	of blue collar
Baseline	8.4%	9.7%	—	—	_
Counterfactual PE	2.9%	12.6%	-3.9%	2.0%	—
Counterfactual GE	3.0%	12.5%	-4.5%	0.1%	4.35%

- \uparrow intergen. occupation & income mobility, \uparrow income equality
- Marginal \uparrow in aggregate earnings in GE

Quasi-Experimental Evidence

Quasi-experimental Evidence

Ideal experiment: Equalize access to occupations

- Hard (impossible) to find the ideal natural experiment
- We use structural model as a laboratory
- Model cannot distinguish between inherited preferences & barriers

Quasi-experimental Evidence

Ideal experiment: Equalize access to occupations

- Hard (impossible) to find the ideal natural experiment
- We use structural model as a laboratory
- Model cannot distinguish between inherited **preferences** & **barriers**

Structural employment decline in fathers' occupations

- Father's network/information less useful
- Preferences of fathers & sons not directly affected
- Interpret as variation in follower 'discounts'

Employment Decline in Fathers Occupation

$$follow_{iot} = \alpha_o + \beta \Delta emp_{ot} + \delta_t + X'_i \gamma + \epsilon_{iot}$$

Employment Decline in Fathers Occupation

$$y_{iot} = \alpha_o + \beta \Delta emp_{ot} + \delta_t + X'_i \gamma + \varepsilon_{iot}$$

Employment Decline in Fathers Occupation

$$y_{iot} = \alpha_o + \phi follow_{iot} + \delta_t + X'_i \gamma + \epsilon_{iot}$$

Effect of Employment Decline by Background

Effect of Employment Decline by Background

Earnings losses from following among badly matched sons

Effect of Employment Decline by Background

Earnings losses from following among sons of poorer fathers

Connection to the Structural Roy Model

Replicate the reduced-form estimates using model-generated data (PE)

- Interpret occupational decline as exogenous variation in discounts
- Generate a marginal change in discounts into father's occupation
- 1st stage: Change in following to a change in discount
- IV: Change in income due to a change in following

1st Stage Estimates: Roy Model vs. Reduced Form

IV Estimates: Roy Model vs. Reduced Form

IV Estimates: Roy Model vs. Reduced Form

Conclusion

Conclusion

- Strong intergenerational persistence in occupations
- Equal access to occupations increases intergenerational mobility
- Following reflects not only selection but misallocation of talent
- Largest increase in mobility among sons of the poorest fathers
- Considerable increase in mobility without a reduction in output

Appendix

Data

- 1. Intergenerational register
 - ◊ Connects children to father and mother biological or adopting
- 2. Cognitive and non-cognitive skills
 - Military draft tests and evaluations from the Swedish Military Archives — available from 1969
- 3. Labor market outcomes (e.g. occupation and earnings)
 - Swedish national census, tax registers, establishment data on wages and occupation of 50% random sample every year

2 & 3 Defines our sample, i.e. sons that were 18 in 1969 and later and are observed at prime age (30-40)

Occupation and income

- Children: Model occupation between 30 and 40, and associated income
- Parents: Model occupation between 45 and 55, and associated income Back

Occupational Mobility Bias

How disproportionally more likely are children to choose parent's occupation

$$OMB_{p,c} = \frac{share_{p,c,child}}{share_{c,child}}$$

where p : parent and c : child index occupations. Random assignment: OMB = 1

Occupational Mobility Bias: Mothers & Daughters

Occupational Mobility Bias: Sons & Mothers

Occupational Mobility Bias: Daughters & Fathers

Skills

Individuals are endowed with a bivariate skill vector

 $(\mathsf{Z}^g_{i,H},\mathsf{Z}^g_{i,F})$

where $Z_{i,k}^{g}$ is the productivity of individual i from generation g in occupation k.

Skills

Individuals are endowed with a bivariate skill vector

 $(\mathsf{Z}^g_{i,H},\mathsf{Z}^g_{i,F})$

where $Z_{i,k}^g$ is the productivity of individual i from generation g in occupation k.

Children inherit skills from their parents according to:

$$z_{i,k}^{g} = \tau z_{i,k}^{g-1} + (1-\tau)\varepsilon_{i,k}^{g},$$

where τ governs the inheritability of traits

Joint distribution of $\epsilon^g_{i,k}$ bivariate normal ($\mu_k=0,\,\sigma^2_k=1),$ and correlation $\rho~(>0)$

Earnings, Costs, and Utility

Occupations as firms

- Linear production Labor is the only factor
- Perfect competition and firms take fixed prices as given
- Workers get paid per efficiency unit of labor
Earnings, Costs, and Utility

Occupations as firms

- Linear production Labor is the only factor
- Perfect competition and firms take fixed prices as given
- Workers get paid per efficiency unit of labor

The logarithm of labor income:

$$y_{i,F}^{g} = w_{F} + \beta_{F} z_{F,i}^{g}$$
$$y_{i,H}^{g} = w_{H} + \beta_{H} z_{H,i}^{g}$$

 $\beta_F > \beta_H \text{:}$ Fishing is the higher paying occupation

Earnings, Costs, and Utility

Occupations as firms

- Linear production Labor is the only factor
- Perfect competition and firms take fixed prices as given
- Workers get paid per efficiency unit of labor

The logarithm of labor income:

$$y_{i,F}^{g} = w_{F} + \beta_{F} z_{F,i}^{g}$$
$$y_{i,H}^{g} = w_{H} + \beta_{H} z_{H,i}^{g}$$

~

 $\beta_F > \beta_H \text{:}$ Fishing is the higher paying occupation

Utility:

$$\mathfrak{u}(\mathfrak{i},\mathfrak{g},k) = \underbrace{\mathfrak{y}_{\mathfrak{i},k}}_{\text{Earnings}} - \underbrace{\mathfrak{m}_{k}}_{\text{Entry costs}} + \underbrace{\mathfrak{d}_{k}\mathbb{I}_{\mathfrak{i},k^{g}=k^{g-1}}}_{\text{Cost discounts}}$$

Comparative and Absolute Advantage

Comparative advantage in fishing

$$s\equiv Z_F^{\beta_F}/Z_H^{\beta_H}$$

Change in s only shifts y_F

Absolute advantage

$$\mathfrak{a} \equiv \mathsf{Z}_{\mathsf{H}}^{\beta_{\mathsf{H}}}$$

Change in a shifts y_F and y_H equally

Predicting Earnings and Entry Probability

Predicting earnings using Random Forest

- For each occupation, train on incumbents, no followers
- The prediction is based on residualized income in logs: $ln(earn_i) = \rho_o + \delta_c + \gamma_y + \varepsilon_i$

 $\rho_o,\,\delta_c,\,and\,\gamma_y$ are, respectively occupation, birth cohort, and year FEs

- Split our sample into six periods, two per decade
- Predict for every individual earnings in every occupation

Predicting entry probabilities - Random Forest

Back

- For each occupation, train on incumbents, no followers, with top 20% earnings
- Predict for every individual probability of entering every occupation

Actual and Predicted Earnings

Random Forest Prediction R²

Predicted Probability of Occupation Entry

Back

Skill distance according to O*NET

Comparison of skill closeness/remoteness using ONet data Back

Skill distance according to O*NET

Comparison of distance measures across occupations Back

Logic-inductive ability: Age 18 vs. 12/13

(a) Fathers' Income Rank

(b) Farhers' Skill Decile

Verbal Comprehension: Age 18 vs. 12/13

(a) Fathers' Income Rank

(b) Farhers' Skill Decile

Occupational Choice and Skill Match: Brothers

Occupational Following and Skill Match: Brothers

Occupational Following and Skill Match

Occupational Following and Skill Match: Brothers

Occupational Following and Skill Match: Brothers

Occupational Following and Skill Match: Birth Order

Occupational Following and Skill Match: Bio/Adopted

Occupational Decline: Automation and Robotization

(a) Automation (Frey and Osborn, 2007)

(b) Robotization (Webb, 2019)

Entry Costs, Education, and Work Experience

(a) Costs and Educational Requirements

(b) Costs and Usual Work Experience

Model implied entry costs

Model implied expenditure shares

Occupational shares — Model and Data

3-digit occupational following - Model and Data

1-digit occupational following - Model and Data

Intergenerational Mobility: Model vs. Data

Intergenerational Correlation in Skills

IV using uncles: Grönqvist, Öckert, & Vlachos, 17

Change in Real Income

